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We apply a modified version of the method of Sinai and Vul in order to study, 
by means of a computer, a closed orbit which appears in the five-mode model of 
bidimensional incompressible fluid on the torus. 
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I N T R O D U C T I O N  

The study of closed orbits for systems of ordinary differential equations has 
got increasing importance in the last years because of the connection with 
the theory of turbolence as developed by Ruelle and Takens (2~ and  because 
of the Feigenbaum's conjecture (31 on the universal behavior of the se- 
quence of bifurcations of periodic orbits. 

The numerical studies of the Lorenz model have been very intensive 
and most of its properties have been clarified by Lanford. (4) Franceschini (5) 
and Franceschini and Boldreghini (6~ also found periodic orbits, by means 
of a computer, respectively for the Lorenz model in a range of the 
parameters different from that explored by Lanford, and in the five-modes 
model for an incompressible bidimensional fluid. 

In such a situation it is extremely interesting to have an exact theory 
which enables one to state under what conditions a certain periodic orbit 
found numerically is rigorously periodic. Sinai and Vul (0 have worked out 
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a criterion to prove the existence and uniqueness of a fixed point of the 
Poincar6 map in a neighborhood of a numerical fixed point by checking 
suitable conditions on the numerical trajectory. 

In this work we use the same approach as in Ref. 1; the difference is 
that the estimate of the bound of the nonlinear part of the Poincar6 map is 
obtained in a simpler way and that the bound obtained is smaller. Further- 
more we take care of the round-off errors of the computer using the interval 
arithmetic. 

All this machinery is applied for analyzing a periodic orbit found 
numerically in Ref. 6, i.e., in a system of ordinary differential equations 
corresponding to the five-dimensional truncation of the Navier-Stokes 
equations for an incompressible bidimensional fluid. 

Section 1 is concerned with the definitions, the notations, and the main 
criterion. In Section 2 there are lemmas useful for evaluating the nonlinear 
part of the Poincar6 map. The linear part of the Poincar6 map is estimated 
as in Ref. 1. In Section 3 we deal with the numerical method and we give 
an analysis of the error connected with it. 

The round-off error of the finite precision floating point arithmetic of 
the computer is controlled by using the method of interval a r i thmet ics  ) In 
Section 4 we present the results obtained in the case of the periodic orbit 
found in Ref. 6. 

. D E F I N I T I O N S  

W e  shall use the same symbols  and notations as in Ref. 1. 
Let X = { x i, i = 1 . . . . .  d } be a vector in the space ~d with the scalar 

product (X, Y) = ~]d= lXiyi. 
We consider the differential equation in R d 

2 =  F ( X )  (1.1) 

where F = ( f ,  i = 1 , . . . ,  d } ENd is defined by the equality 

f . (X )  = (Gi, X )  + (BiX, X )  + C i, i = 1 . . . .  , d 

and G i, i = 1 , . . . ,  d, is a constant v e c t o r  B i, i = 1 , . . . ,  d, is a constant 
d • d matrix, C i, i = 1 . . . .  , d, is a constant. 

We denote with S t the one-parameter group of shifts along the trajecto- 
ries generated by the differential equation (1.1); X~ StX~ is the solu- 
tion of (1.1) with initial condition X ~ and y = {X~ 0 <~ t ~< T)  is the 
corresponding trajectory in Nu. 

Let I" = ( X ] xj = a }, j E ( 1 . . . . .  d } fixed, be a given hyperplane in 
the space R d, O be a fixed parameter which will be suitably chosen later, 
Wp(y) be the o-neighborhood of y, and Uo(X ~ be the o-neighborhood of 
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the point X ~ E F of the form 

i~j 

F'(X)  is the matrix with elements F/,k(X ) = Of(X)/Oxk.  
We shall make use of the linearized equation 

dz = F,(XO(O)z (1.2) 
dt 

Let f ( s ,  t) be the fundamental matrix of solutions of (1.2). For any T 
we define 

C 1 = sup [ [ f ( s , t ) J  I 
O <~ s, t .<< T 

The norm of the matrix S is given by 

I I J ]l -- (max eigenvalue of J ~ < ' * )  J/2 

C 2 is a constant such that 

I ~ Y I Z k C C z ] Y I I Z I  fo rany  Y , Z ~ R  d 
i,l,k 

We shall use the symbol F/' for the matrix O~/Ox t Ox k l ,k  = 1 , . . . ,  d. 
The existence of C 2 can be derived from the form of F(X).  Further 

C3=  inf Ifj(X)], Cn=sU p sup ] f (X) l  
xE UAX ~ i xe  Up(X ~ 

C ; =  sup [fF'(X)jf, C5= sup lIF'(X)l[ 
x~ uo(x ~ xE war ) 

We now state the main criterion for a rigorous study of the periodic orbits. 
Let F be the hyperplane chosen above and X ~  F, let T be the least 
positive time such that S r X  ~ E r .  Let us introduce the following notations: 

X =  S r X  ~ Y =  X -  X ~ yO = . ~ _ X  o, c = ] X - X  ~ 

If ~ is the Poincar6 map induced by the flow S t on the hyperplane F, we 
have ~ X  ~  )T. We expand the Poincar6 map in the neighborhood 
u~(x ~ n r :  

Q ( Y ) = 5 ~  ~ Q ( Y ) =  Y ~  

L is the derivative of the Poincar6 map evaluated at X = X ~ and K(Y) ,  as 
we shall prove, satisfies the following condition: 

A: There exists Po and k o > 0 such that for any p < Po and any 
y1 = X I  X o, y 2 _ x 2  xO, x I x 2 ~ F  ' [ y2 l<p ,  [y21< O 

[K(y1)  _ K(y2) l  < k0p/y1 _ y2[ 
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Criterion, Let [yO[ = e and suppose that for some p~ < Oo 

II(L - E)- ' l [ (e /O~ + koO,) < 1 (1.3) 

Then there exists a unique fixed point of the Poincar4 map in the O l- 
neighborhood of the point X ~ 

For the proof of this criterion see Ref. 1. 

2. ESTIMATE OF THE NONLINEAR PART OF THE POINCARI~ MAP 

In order to evaluate the constant k 0 appearing in the criterion we need 
some simple and useful lemmas. 

Le mm a  1. If Po = 1/C2C2 T, ]X - X~ < Po, then for 0 < t < T 

IStX - S,X~ < 2C, IX 1 - Xo[ (2.1) 

Proof. We use the definition X(t)  = S t X ,  X~ = SiX ~ 

a xO(t) l  F(xO(t))  ~-~ [X( t )  - = F(X( t ) )  - 

= F ' ( X ~  - X~ 

+ � 8 9  X~  - X~ (2.2) 

We write the equation (2.2) in this way: 

x ( t )  - x ~  = s ( o ,  t ) ( x -  x ~ 

+ foo'd'f(s'o�89 (F,,(x(s)- xO(s)),(x(s)_ xo(~))) 

C1C2 ( td s  
IX(t) - X~ < G I X  - X~ + - - -2 -3o  IX(s) - S~ 2 

Let Z(t)  be the solution of the integral equation 

z(o = c,Ix- x~ + ~ fo'd~z2(s) 
then 

c,[x- x~ 
< 2 G I x -  sol  I x ( t ) -  g~ < Z(t )  = 

1 - (c?c2t/2)lx- x~ 
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L e m m a 2 .  If IX ~ - X ~  X 2 - X ~  t <  T 

ISt X '  - SIX21 < BellE 1-  X21 (2.3) 

The proof is analogous to the proof of Lemma 1. 
N o w  we are able to verify the condit ion A and to estimate k 0. 

Proposit ion 1. If p < p o a n d  IX ~ - X~ < p, }X 2 -  X~ < p, X~,X 2 
E F then 

I K ( Y ' ) -  K(y2)I < koplY 1 -  Y21 (2.4) 

where Y�91 = X l - X ~ y2  = X 2 - X 0 and ( c4)[ c5( c4)] 
ko=16C• 1+~-~3 C , C 2 T + - ~ 3  3 2 + - ~ 3  

Let T1, T2, T be such that ST X 1 ~ F, ST2X 2 ~ F, ST XO = .Y Proof. 
E F. We have to estimate the quantity 

K ( Y ' )  - K ( Y  2) = X'(T1) -- X2(T2) - L ( Y '  - y2) 

Using the following notation: 

hi(s) -.-~. (F t ' (X i ( s )  - X~  - X~ 

if we suppose for definiteness T 2 < Tj, we have 

X I ( T , )  - XZ(T2) = X l ( T 1 )  - X l ( T )  -~- X t ( T )  

- x 2 ( r )  + x 2 ( r )  - X~(T2) 

1 s  T)[  h'(s)  - h2(s)]ds = s ( 0 ,  r ) ( x  I - x 2) + 

+ ; ( z [  F ( X ' ( s ) ) -  F ( X 2 ( s ) ) ] d s +  F ( X ' ) ( T  l - 7"2) 

(2.5) 

where f , (X t) =f. (Xl(r i ) )  and T 2 < r i < T l, i = 1 . . . . .  d. 
If we observe now that x / ( T , ) -  x~(T2)= 0 and if we put in (2.5) 

F(.~ I) = F ( X ) +  F'()~)(.g 1 -  .g) we obtain the equality 

f j ( ~ ) ( r , -  ~ )  

2 l T = -- ~jk(O,  T ) ( X  2 -- X k) -- ~ s ds ~ je (S ,  T)[ h l(s) - h2(s)]e 

- f ( 2 [  fj.(X2(s)) - f j ( X Z ( s ) ) ] d s -  f/~(2)(2~e - Y~e)(T, - T:) (2.6) 
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We recall that (see Ref. 1): 

Lik = -z~,k(O, T) - f i (X )Jjk(O, r ) / f~ (Y  ) 

and we replace in (2.5) the equality (2.6), we then find 

C4 1 

+ f 21F(X'(s)) - F(X2(s))[ ds 

+ C;[X 1 - XIIT  1 - 7'21 ) 

< 1 + ~  (16C~C20TIX 1 - X  21+8C6C,]T 2 -  T[ 

• I x '  - x21 + C;IX'  - x I  IT, - r2l} 

The proposition is proved if we observe finally that 

C1 1 1 [xO(T) _ xZ(T)l < 2__d_~30 I T 2 -  TI <<'-~3 Ix f (T2)-  xf(T) l  = ~33 

analogously by Lemma 2 

C1 
I T 1 -  T21 < 8~--~3 IX' -- X2[ 

IJY 1 - -g[ = IXz(~ ) - X ~  < c41r,  - r l  + aC,O <. 2C ,0  1 + -~3 

C; < C5 

3. THE INTEGRATION METHOD AND THE ESTIMATE 
OF THE ERROR 

We integrate the differential equation (1.1) using the 
integrated approximations with step A 

X(ol(t  ) = X o 

method of 

f0 X( i ) ( t )=X~ dsF(X(i_l)(s)) , 0~< t < A ,  i <  m (3.1) 
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The integration is done with m and A variable in order to see the 
dependence of the results on their choices. 

The error of such a method at each step is of the order of 

(CsA)m+'(m + 1)! 

Let a be the error of the computer in a single integration step: i.e., 
[Xk+ 1 --RXk[ < a, where Xo,X 1 . . . .  is the pseudotrajectory and R de- 
notes the application of the numerical method (3.1) to the point X k. 

If we look for the intersection with the hyperplane F of the pseudotra- 
jectory, corresponding to the Poincar6 map, we can reduce by a constant 
factor the integration step at every intersection of the pseudotrajectory with 
F and thus we find a point X* and a period T. 

The quantity e used in the criterion can be evaluated as follows: let 
n + ~ini be such that X* --- X,,+2,,, ~, n being the number  of integrations 
with step A, n i the number  of integrations with step Ai; then 

= I -x~ + ~ - x * l  + I x *  - x~ 

(3.2) 

Since for a periodic orbit the greatest contribution to e is [S.,~+E,.~X~ 
X* I we give the following: 

Proposi t ion 2. If a < 1/16C3C2Tn then 

IXk -  Sk~X~ <<. 16kC~a 

Proof. It follows from the numerical method used by us that 4 

I X k -  S~Xk_ll-K< (CsA)m+t(m + 1 ) ! + a  < 2a 

then by Lemma 2 applied to the p0-neighborhood Woo(y ) 

ISjaXk- SjA(SaXk_,) <~ 16C,a 

Let us write IXk - Sk~xX~ in this way: 

k - I  

Xk-- Sk AXO'~" E [ Sj~Xk-j- Sj'A(SAXk-j-I)] 
j=0 

Thus 

k--I 
[Xk -- Sk~xX~ <~ ~ 16aC, IXk_y- S~Xk_y_lJ < 16C,ka 

j=0 

4 We always choose m in such a way that a is bigger or of the same order of (CsA)m+l / 
(m + 1)! at any integration step. 
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where we used the condition 

e~ < 1! 1 6 n C ~ C 2 T  

in order to apply Lemma 2 at any k. 
Using the interval arithmetic we estimate the quantity ~ and thus the 

total error e, (7) 

4. A P P L I C A T I O N  

We apply the approach described above to a periodic orbit appearing 
in the five-dimensional truncation of the Navier-Stokes equation. (6~ We 
find numerically the fixed point of the Poincar6 map using Newton's 
method which ensures convergence in few steps. The equations are 

= - 2 x  + 4 y z  + 4 u v  

= - 9 y  + 3 x z  

2 = - 5 z  - 7 x y  + R 
(4.1) 

f ~  = - 5 u  - x v  

= - v  - 3 x u  

R = 25 

We study the map induced on the plane z = 3 by the flow of solutions of 
(4.1). The coordinates of the numerical stable fixed point are 

x o = 0.46662024540 

Yo = 0.64215002423 

Zo= 3 

u 0 = 0.687659513100 

Vo = - 2.9799467541 

2 

(4.2) 

The precision of the numerical fixed point is given by Ix* - x~ < 10-II 
The values of the constants are C 2 = 18, C4 = C3 = 8, C5 -- 32, C; = 23, 
k 0 = 5 105, T =  0.759 I[(L - E)- l l [  = 3, Cl = 10. C 1 is evaluated using the 
same method as in Ref. 1. 

In order to find a bound for �9 we use the interval arithmetic. We 
proceed as follows: once we have found the numerical fixed point we use 
another program where the numerical integration of the system of differen- 
tial equation (4.1) is done in such a way that the rn of (3.1) can be varied in 
order to satisfy at each integration step the condition on a used in 
Proposition 2. Furthermore to each numerical variable a numerical interval 
is associated in this program, the amplitude of the interval is equal to the 
error on the numerical variable due to the truncations of the computer and 
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due to the propagation of the error generated by all the arithmetic opera- 
tions made in order to find the value of the variable, and the center of the 
interval is equal to this value. We give to each variable x0, Y0, z0, u0, v0 in 
(4.2) an initial interval corresponding to the maximal precision of the 
computer, i.e., 10-17 for the Univac 1100 working in double precision. 

Then all the arithmetic operations appearing in the integration method 
(3.1) are substituted by subroutines which compute the interval associated 
to the result of the arithmetic operation taking into account also the 
truncation and the finite precision of the computer. This allows us to 
evaluate the values of a and e the value of which is less than 0.3 • 10 -7, 
and we checked also Proposition 2. We also checked that the greatest 
contribution to e is given by this term because [~ - Sn~+~,,A~[ is of the order 
of 10 -1~ [see (3.2)]. Thus the criterion is satisfied with Ol = 0.510-6. 

Theorem, In the 0.510 -6 neighborhood of (xo,  Yo,Zo, Uo,%) there 
exists a unique fixed point of the Poincar6 map on the hyperplane z = 3. 
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